主要成果 |
科研项目: [1] 高效在线代理模型管理技术驱动的代理模型辅助群体智能算法研究,国家自然科学基金青年科学基金项目,2022-01至2024-12,30万元,在研,主持; [2] 基于统计分析理论的城市复杂环境下有毒气体传播预测研究,国家自然科学基金联合基金项目,2022-01至2025-12,260万元,在研,子课题主持; [3] 演化数据导向的代理模型辅助群体智能优化技术研究,山西省青年科技研究基金,2019-09至2022-09,3万元,结题,主持。 期刊论文: [1] 于海波,朱秦娜,康丽,乔钢柱,曾建潮.带偏向性轮盘赌的多算子协同粒子群优化算法[J/OL]. 控制与决策:1-9. (2023). https://doi.org/10.13195/j.kzyjc.2022.1486. [2] Haibo Yu, Yiyun Gong, Li Kang, Chaoli Sun, Jianchao Zeng, Dual-drive collaboration surrogate-assisted evolutionary algorithm by coupling feature reduction and reconstruction[J]. Complex & Intelligent Systems. (2023). https://doi.org/10.1007/s40747-023-01168-3 [3] Haibo Yu, Yaxin Kang, Li Kang, Jianchao Zeng, Bi-preference linkage-driven artificial bee colony algorithm with multi-operator fusion[J]. Complex & Intelligent Systems. 9, 6729–6751 (2023). https://doi.org/10.1007/s40747-023-01085-5 [1] Haibo Yu, Li Kang, Ying Tan. Jianchao Zeng, Chaoli Sun. A multi-model assisted differential evolution algorithm for computationally expensive optimization problems[J]. Complex and Intelligent Systems. 2021, 7: 2347–237. [4] Haibo Yu, Li Kang, Ying Tan, Chaoli Sun, Jianchao Zeng, Truncation-learning-driven surrogate assisted social learning particle swarm optimization for computationally expensive problem[J]. Applied Soft Computing, 2020, 97(Part A):106812. [5] Haibo Yu, Ying Tan, Chao Sun, Jianchao Zeng, A generation-based optimal restart strategy for surrogate-assisted social learning particle swarm optimization[J], Knowledge-Based Systems, 2019, 163: 14-25. [6] Haibo Yu, Ying Tan, Jianchao Zeng, Chaoli Sun, Yaochu Jin, Surrogate-assisted hierarchical particle swarm optimization[J], Information Sciences, 2018, 454-455: 59-72. [7] Haibo Yu, Ying Tan, Chaoli Sun, Jianchao Zeng, A Comparison of Quality Measures for Model Selection in Surrogate Assisted Evolutionary Algorithm[J], Soft Computing, 2019, 23(23): 12417-12436. [8] Li Kang, Zhongkang Han, Haibo Yu, Qiangshun Wu, Hanpei Yang, Experimental and theoretical investigations on the enhanced photocatalytic performance of titanate nanosheets/sulfur-doped g-C3N4 heterojunction: Synergistic effects and mechanistic studies[J], Separation and Purification Technology, 2022, 278: 119482. [9] Li Kang, Liangliang Xu, Zhongkang Han, Haibo Yu, Qiangshun Wu, Mi Wu, Zuming He, Lina Wang, Hanpei Yang, Strategy to enhance photocatalytic performance of heterojunctional composite by dimensionality modulating: Insights into the scheme in interfacial charge migration and mass transfer[J], Chemical Engineering Journal, 2022, 429: 132355 [10] Li Kang, Hanpei Yang, Haibo Yu, Qiangshun Wu. Insight into the existent state of nitrogen-doped carbon dots in titanate nanotubes and their roles played toward simultaneous removal of coexisted Cu2+ and norfloxacin in water[J]. Journal of Colloid and Interface Science, 2022, 628: 910-923. 会议论文: [1] Yaxin kang, Haibo Yu, Li Kang, Gangzhu Qiao, Dongpeng Guo, Jianchao Zeng, A Surrogate-Assisted Evolutionary Algorithm based on K-Means Clustering and Lévy Flight[C] China Automation Congress(CAC), Chinese Society of Automation, Chongqing, China, 2023 [2] 龚逸昀,于海波,康丽,程志平,曾建潮.一种基于双受限玻尔兹曼机的代理模型辅助进化算法[C]2023中国自动化大会论文集,中国自动化学会,重庆,中国,2023 [3] Yiyun Gong, Li Kang, Gangzhu Qiao, Dongpeng Guo, Haibo Yu, Jianchao Zeng, The Adaptive Search Strategy Selection Based on the Guide of Two Learning Mechanisms for High-Dimensional Expensive Problems[C]. 2023 5th International Conference on Data-driven Optimization of Complex Systems (DOCS), Tianjin, China, 2023, pp. 1-7, doi: 10.1109/DOCS60977.2023.10294738. [4] Haibo Yu, Ying Tan, Chaoli Sun, Jianchao Zeng, Clustering-based evolution control for surrogate-assisted particle swarm optimization, in: 2017 IEEE Congress on Evolutionary Computation (CEC), 2017, pp. 503-508. [5] Haibo Yu, Ying Tan, Chaoli Sun, Jianchao Zeng, Yaochu Jin, An adaptive model selection strategy for surrogate-assisted particle swarm optimization algorithm, in: 2016 IEEE Symposium Series on Computational Intelligence (SSCI), 2016, pp. 1-8. [6] Jie Tian, Chaoli Sun, Jianchao Zeng, Haibo Yu, Ying Tan, Yaochu Jin, Comparisons of different kernels in Kriging-assisted evolutionary expensive optimization, in: 2017 IEEE Symposium Series on Computational Intelligence (SSCI), 2017, pp. 1-8. [7] Hao Wang, Chaoli Sun, Yaochu Jin, Shufen Qin, Haibo Yu, A Multi-indicator based Selection Strategy for Evolutionary Many-objective Optimization, 2019 IEEE Congress on Evolutionary Computation (CEC), 2019.6.10-13, Wellington, New Zealand, 2019, pp. 2043-2050. |